

High-resolution X-ray diffraction and grazing incidence X-ray reflectivity analyses of nanostructured porous silicon

P.G. Abramof 1,2, A.F. Beloto 2, U.A. Mengui 2, A.Y. Ueta 2 and N.G. Ferreira 2

SUBJECT AND OBJECTIVES

¹ Centro de Desenvolvimento de Tecnologia e Recursos Humanos - CDT, CEP 12242-800 SJC, SP, Brazil
² Instituto Nacional de Pesquisas Espaciais INPE/LAS, CP 515, CEP 122245-970 SJC, SP, Brazil

- > Porous silicon layer (PSL) formation by stain etching and its structure control as a function of doping level, p-type and crystalline orientation.
- >Structural characterization of PSL by grazing incidence X-ray reflectivity as a function of etching time.
- > Study of the nanoporosity as a function of etching parameters.
- > Characterization of PSL by X-ray diffraction as a function of etching time.
- > Study of the strain in PSL a function of etching parameters.
- > Structural characterization of PSL by high-resolution X-ray diffraction .

SAMPLE PREPARATION

POROUS SILICON LAYER

- \succ Silicon p+ (100), boron doped, 10^{18} atoms/cm³, resistivity of 0.01 to 0.02 W.cm.
- > Stain etching HNO_3 : HF (500:1) + $NaNO_2$ (0.1 g/L).
- > Etching time varying at 1 to 10 minutes

CHARACTERIZATION BY GRAZING INCIDENCE X-RAY REFLECTIVITY

The X-ray reflectivity spectra

The porosity of the porous material can be determined by the following relation:

$$P_0 = 1 - \left(\frac{\omega_{c,PS}}{\omega_{c,Si}}\right)^2$$

where $\omega_{\text{c,PS}}$ is the critical angle of the PS layer and $\omega_{\text{c,Si}}$ is the critical angle of bulk silicon (0.223° for the CuK $_{\alpha 1}$ radiation).

CHARACTERIZATION BY HIGH-RESOLUTION X-RAY DIFFRACTION

Porosity obtained from the value of the PS critical angle versus the etching time.

ω scans and ω/20 scans

The Rocking curve (ω scans)

The strain obtained by the lattice

The relative expansion Δa/a, where Δa is the difference between the porous layer and the silicon bulk lattice parameter, is directly proportional to the angular splitting Δω between both peaks:

$$\frac{\Delta a}{a} = -\frac{\Delta \omega}{\tan \Theta_{Si}}$$

where Θ_{Si} is the (004) Bragg angle of the bulk Si.

CONCLUSIONS

- > The results showed that the porosity and the compressive stress increase for etching time up to 5 min and then this tendency is replaced by an oscillatory behavior.
- > The results showed also that the variation in the porosity and in the stress is directly correlated with the crystallite size distribution in the PS layers as a function of etching time.
- >The observed morphology is directly correlated with the lattice mismatch controlled by the solution concentration and the etching time.
- > Stain etching can be to guarantee the use of PS layer as substrate for growing epitaxial narrow gap semiconductor films.